Projection on higher Landau levels and non-commutative geometry

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projection on higher Landau levels and non Commutative Geometry

The projection of a two dimensional planar system on the higher Landau levels of an external magnetic field is formulated in the language of the non commutative plane and leads to a new class of star products. PACS numbers: 05.30.-d, 11.10.-z, 05.70.Ce, 05.30.Pr

متن کامل

The non-commutative Landau problem

The Landau problem is discussed in two similar but still different non-commutative frameworks. The “standard” one, where the coupling to the gauge field is achieved using Poisson brackets, yields all Landau levels. The “exotic” approach, where the coupling to the gauge field is achieved using the symplectic structure, only yields lowest-Landau level states, as advocated by Peierls and used in t...

متن کامل

Non-commutative Algebraic Geometry

0 Introduction This is a reasonably faithful account of the ve lectures I delivered at the summer course \Geometria Algebraica no Commutativa y Espacios Cuanti-cos" for graduate students, in Spain, July 25{29, 1994. The material covered was, for the most part, an abridged version of Artin and Zhang's paper 2]. Fix a eld k. Given a Z-graded k-algebra, A say, which for simplicity is assumed to be...

متن کامل

Non-commutative geometry and irreversibility

A kinetics built upon q-calculus, the calculus of discrete dilatations, is shown to describe diffusion on a hierarchical lattice. The only observable on this ultrametric space is the “quasi-position” whose eigenvalues are the levels of the hierarchy, corresponding to the volume of phase space available to the system at any given time. Motion along the lattice of quasi-positions is irreversible....

متن کامل

Non–Commutative Geometry on Quantum Phase–Space

A non–commutative analogue of the classical differential forms is constructed on the phase–space of an arbitrary quantum system. The non– commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl–Wigner symbol map to the differential envelope of the linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2002

ISSN: 0305-4470

DOI: 10.1088/0305-4470/35/20/307